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If the number of variables is growing the size oÍ Íazzy
rule bases increase exponentially. To reduce size and
inference/control time, it is often necessary to deal with
sparse rule bases. In such bases, classic algorithms such
as the CRI of Zadeh and the Mamdani-method do not
function. In such rule bases, rule interpolation tech-
niques are necessarT. The linear rule interpolation (KH-
interpolation) based on the Fundamental Equation of
Interpolation introduced by Koczy and Hirota is suitable
for dealing with sparse bases, but this method often re-
sults in conclusions which are not directly interpretable,
and need some further transformations. One of the pos-
sible ways to avoid this problem is the interpolation
method based on the conservation of fuzziness, proposed
recently by Gedeon and Koczy for trapezoidal fuzzy sets.
In this paper' a reÍined version of that method will be
presented that is fully in accordance with the Fundamen-
tal Equation, with extensions to multiple dimensions, and
then to arbitrarily shaped membership functions. Sev-
eral possibilities for the latter will be shown.

Keywords: Fuzzy inference, Interpolation

1. Introduction - Fuzzy Rule Interpolation

If a huzy model contains k variables and maximum T
linguistic (or other fuzry) terms in each dimension, the order
of the number of necessary rules is O(T t;. This expression
can be decreased by decreasing either 7 or k or both. The
first method leads to sparse rule bases and rule inte,rpolation
that was first introduced by KÓczy and Hirotao''). This
method was based on the Fundamental Equation of Rule
Interpolation:

d (A .A ) :d (A . / , ) : d (8 . 3 ) : d (B . , B )  .  .  .  .  . ( 1 )

whereÁ1 -- BtandA2.- Bzare rules,Á* ls an observation,

and B* is the conclusion searched for, and d denotes some
kind of distance or degree of dissimila.ity. In the first inter-
polation algorithms, this distance was introduced as the set
of lower and upper cr-cut distances,s) describing the relative
position of two comparable convex and normal fuzzy sets
(CNF-sets) unambiguously. The interpretability of these dis-
tances assumes the existence of a partial ordering and a
distance in the input and output universes of discourse X and
Y, that is fully in accordance with the concept of gradual
rules.2) This family of interpolation techniques has various
advantageous properties, but the conclusion generated by
the solution of the Fundamental equation
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does not conserve piecewise linearity of rules and observa-
tion. Further, it often results in all abnormal membership
function for B* that needs further transformation for obtain-
ing a regular fuuy set, which will in these cases not be
normal, and e.g. multiple step inference by this KH-interpo-
lation is possible only by repeated transformations of results.
Kóczy and Kovacs,g) Shi and Mizumoto,1o) Kawase and
Chena) have determined various conditions when the con-
clusion of KH-interpolation is always directly interpretable.
The application of these conditions leads to restriction of the
shape of rules and of observations that might be an obstacle
to practical applications in some contexts. Some alternative
or modified interpolation algorithms avoiding the problem
of conclusion have been proposed by Wu et a1.11) and
Baranyi et al.1) however, in these approaches the Fundamen-
tal Equation cannot be observed unconditionally.

Gedeon and K6czy3) have introduced an alternative
method that always guarantees the direct interpretability of
the conclusion and conserves the basic idea of the starting
equation. However, that approach is not applicable for cer-
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tain crisp special cases. In the next, we will present the basic
idea of this approach, and then we will propose modified
formulas that are fully applicable and observe the Funda-
mental Equation.

2. Interpolation by the Conservation of
Fuzziness

The method introdu".d3) is based on the following idea.
While KH-interpolation and other related methods consider
the entire shape of rule antecedents and consequence flank-
ing observation (in a more general case: in the whole rule
base), often the size of these fivzy sets is not comparable
with the observation. A typical example is when antecedents
cover regions of input space' such as ín the case of havilg
a structured hierarchical rule base with sparse partitionő),
each element of the partition having usually a much larger
extent than the observation (which latter might even be
crisp). In this example, the "partition" is a set of disjoint
fuzzy subsets in one of subspaces of the entire input space
(in the sense that subspace is one of the projections of origi-
nal space). Suppose that the input universe is X: Xt x Xz
where each Xt might be multi-dimensional in general, then
the partition fI ís in the upper' ''meta-rule'' level, so

fI = {Áorr4 o,...A,,,} ,

and fI is sparse if

rg

supp(UAs,) * X,, ,

the suppon 
"r 

an. union of the elements of the partition is
a proper subset of subspace.

Such a hierarchical structuring of the rule base and the
introduction of a fuzzy partition is not reasonable if the sets
Aot are not rather large, so the sub-rule bases belonging to
each of them are valid in a relatively large region of Xr. The
observation is, however, typically rather "narrow", other-
wise it would not be informative. The interpolation problem
appears when the observation does not fire any of Áo; but
hits in the gap among them. This situation will make it
necessary that several (at least two) sub-rule bases are inter-
polated. In such a situatiorÍ the significant feature of obser-
vation is how close it is to the nearest flanks of the
neighboring regions, and its distance from their farther sides
is irrelevant!

To be able to interpolate the conclusion only by evaluat-
ing the closer flanks in each dimension, we have introduced
the idea of interpolation by the conservation of fuzziness.
The method was proposed for the case of trapezoidal rules
and observations (including the special cases of triangular
or CVCII crisp sets).'/ Like in the case of KH-interpolation,
it is necessary that the notions of ordering and distance exist
in f,i r). I'et A| and Á* be both trapezoidal and one-dimen-
sional. The distance of the cores of these two is denoted by
dt(AlA*). (In this case there is neither U nor I indicated ín
the subscript of d, as this distance is neither one, it is be-
tween the U-point of Át and the L-point of Á*.) If both the
antecedent and observation are multi-dimensional, the same
calculation should be done in each dimension separately,
and the resulting distances are obtained by the Euclidean

r t t lnru l*--i i-i r.r. Y

dt(Bt ,B.)
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v Fig. 1. Denotations of the fuzziness values of facing trapezoi-
5 dal rules.

)

ihe difference between the support and the core, which we
shall call here the fuzziness of the set (obviously 0 if the
flank is vertical, i.e., the set is crisp from the side in ques-
tion) will be denoted by

,ftr: rudsupp(A1) )- sup{cor4Ar)l ,

and

ft : in\core(A.) ) 
- inr{sapfia') } .

Similarly, the hvzíness of the other side of observation (f11)
of the other antecedent (fu), and of the consequence can be
defined, the left one being the following (assumed that the
ordering in Y is defined so Br I B):

Fru: su{sapp(^B') }- sup{corQB)|.

Finally, the core distance of the two consequence should
be dt (B\8" ) (although it is not yet known in the moment).

With the above mentioned denotations (see also Fig. 1),
the first rough approximation for tbe fuzziness of the con-
clusion,B* might be the following:

rt'+ ^dr(BrB')r  = f -'  r  
d r (ArA-) '

statíng that the ratio of the fuzzíness of the conclusion and
of observation should be determined by the ratio of the core
distances of the antecedent observation, and the consequent
conclusion pairs. The disadvantage of this formula is that it
does not take into account the fuzzirress of membership
functions in the rule. We introduced a normalized fictive
value of. Fut:

r, . dr(Bri.)
Í  l l t  =  f l t t -"" dr(ArA.)

(which is usually different from the real F1y) and the ex-

pression of P* can be modified such as this:

Fr"* = Fr'-(7.*jfu,

96

^dr(Br,B"), ,  Fru - F 'ut,= IL 
o*or41\t 

+ -) '
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where z stands for either Fp oÍ F,ru.In [3] the first possi-
bility was chosen and the final formula for the fuzziness of
the conclusion was

Analogous formulas can be found for the other flank of Á-.
As it was mentioned in the paper, this choice induced a

problem when Bi was crisp, so in that case we proposed

F.Fr"* = fr+
J l U

In the next. the method described above will be modified.

3. Conservation of FuzzÍness and the Fun.
damental Equation

The method summarízed n the previous section has no
direct connection with the Fundamental Equation of inter-
polation, although the way of getting the position of the core
of the conclusion is in full accordance with it. Irt us show
formulas for that. I-et the core length of observation be
denoted by c*, and the core length of the conclusion C*.
(For the denotations used, see also Figure 2).T\e latter can
be calculated by

c = dL(BbBz)

c* dr(ArA) '

where

dr(Br r) = dr(BrB.) + C' + d{B-,82) ,

(where none of the members on the right side are known
beforehand) and

dt(ArA) : dt(ArA.) + c. + dr@t Az) .

The former equation expresses the fact that the relative
core lengths of the conclusion and observation (normalized
by the distances of the cores of the two flanking rules)
should be in the same ratio as the relative coÍe distances
between consequence and antecedents (normalized by the
same factors).

From there we obtain:

r-t+ -dr(Br'rBr)L ' ' - - c - - : - .  -  . . . ( 4 )-  
d r (ArAz) '

The position of core(B*) between Br and Bz can be de-
termined directly by the Fundamental Equation just by
changing the definition of distance (dissimilarity) slightly:

dr(ArA.) : dr(Bra-)

dr(A. A) dr(B. B) 
'

from which, taking also the equation for C* into account:

I

0

Fig.

Fuzzy Rule Interpolation by the Conservation

Y

2. Denotations with interpolated trapezoidal rules.

dr(B- B) = dlA. / 
'd'(B' ')

til 
d1(A1A2)

(6)

(s)

(although this latter one can be also obtained from the pre-

vious results as dr(8.,8) = dr(Br$) - dr(8r3.) - C* al-
ways holds) and all the quantities on the right side are
known from rules and observation.

The critical question is how the principle of the conser-
vation of fuzziness can be brought into arcordance with the
Fundamental Equation. In this problem, not both rules flank-
ing observation are considered, but only one. However, the
starting point for calculating the unknown fuzziness of B*
ls that its dissimilarity to the core distance between Br and
,B* should be in the same ratio to the dissimilarity of the
consequent 81, &S the dissimilarity of the fuzziness of Á* to
the core distance of Át and Á* js to the dissimilarity of the
fuzziness of Át to the Same core distance. We intentionally
use the term dissimilarity instead of distance, as in the same
context we use distance for the geometric distance along X.
If we describe the dissimilarity between two lengths in X by
their ratio, we get (omitting the subscripts Z and U for
simplicity in the next few lines):

4Fdtf118.)) = =4* :, etc.
d(B,B')

From here, the Fundamental Equation for dissimilarities ö
yields

qF,d(BLB-)) : d(F1,d(BrJ-)) = \f ,d(fu,,4-)): öff1,d(Arl-)) ,

trr
d(BrB.) _ d(A,Á*)

F l  
- f i '

d(8t3.) d(ArA.)

from which we get

F: f
F l  Í , '

and finally

t r . , ,
n=f i - : :  . (7)

l l u

It is interesting to compare this with the formula prcl-
pos.d3).

or l  d l (A l4 r ;  I  rd l (A . ,A2) l

dr(B r B) = d r(Ar/ 
.' d'(B t B')' ) 

drÁrrL.'\

and similarly
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Irt us namely choose

F1y. So we obtain
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r* ,.d.PE)G*W).? 1= = I,  
á,(e,A*)..  

-  
z

z = F,,,= Í,ffi instead of

La ,  -d , (B,F-) , ,  .  Fw_ F,Ú 'Ít = It  a,1ant,  
*,  

4,@,,  . )hTt@tl)

, *d.t(Bt,B") ,, . Fru _ F,1'U í \ ,- *FIU= I L  ' *  
'  

_ L ) = f t  
Í , 'd{AtA\' 1rr!ft__

dl(AÁ.)

which is identical with the former result obtained by using
the Fundamental Equation. In this paper we propose this
modífied formula for the calculation of the fuzziness of the
conclusion.

Similarly, the upper fuzziness is obtained by

It should be investigated under what conditions formulas
obtained here do not work.

If in rÍ , Ítu = 0 (Át is crisp on the upper side), it is
reasonable to differentiate the cases when FUJ = 0 (Br is
also crisp on the upper side) and when Ftu * 0 (it is not
crisp). In the former case, it is reasonable to assume that

hu dt(BtB-) j
lim *: = _--:_:____:)_-_-__!_. tiom which we obtain

f iuf ru -g Í lU at(At{*)

Frllrrpru-rr=fr-ffi.

In the latter case, however, the ratio of the hlzzíness of
observation and the antecedent is infinity, and having a non-
crisp consequent, it is impossible to conserve the relative
fuzziness in such a case here, it is not possible to determine
B* as the starting knowledge is semantically inconsistent.
Similar considerations can be done for the upper fuzziness
of -8. as well.

of course, if r = 0 itself (Á* ls crisp on the upper side)'
the formula will result automatically into F* = 0, meaning
that B* should be crisp, too.

The formulas that were obtained for C* and d{BtB*)
will always !e applícable, as d{AtA2) > 0 is always true,
otherwise there is no sense in interpolating at all.
Results of the interpolation by the conservation of fuzziness
(KHG) compared to KH (linear) interpolation and the first
version of this method (GK).

At the end of this section, let us illustrate the new inter-
polation method by a simple numerical example (see Fig.3).
The data are taken from (3). Irt the two trapezoidal rules
be determined by the following characteristic points in the
universesX= [0,100] and Y= [0,100]:

A|. o, 5, 25, 30
A2: 70, 75, 95, 1-.00
B{ 0,  15,20,  30
82: 70, 85, 90, 100

The observation is

Fig. 3. Results of the interpolation by the conservation of
fuzziness (KHG) compared to the KH (linear) interpolation
and the first version of this method (GK).

A' '  35, 55, 55, 60.

Irt us calculate first what would be the conclusion if
KH-interpolation method were used on this rule pair and
observation.

The immediate conclusion will be in this case

Bh: 35, 65, 50, 60 .

Clearly, this needs further treatment as 65 > 50 indicates
a "loop" in the resulting membership function.

If, however, the method suggested in (3) is applied, we
obtain

Bbx: 24, 59, 59, 69,

which is a directly acceptable membership function.
Irt us calculate now the result with help of formulas

obtained in this section.
Core Length

g -  = , - ! ! !é) :0x  *=O,dr(ArAr) 5u

Core Position

d,(B,B-\ = díAtA)m= 30 x s =,n ,

and

dr@. Bz) = d{A* Az)ffi, = ?-0 x # : ru,
which can be also obtained by
dt(B.B): d{Br!z) - dt(B$*) - C* = 65 - 39 - 0 =26 .
From here, the peak of the singleton core conclusion is at
2O + 39 - 59, which is identical with the former value (of
Bbrc).

Values of fuzziness

.  ,  F , , ,  1 0
n=f r=:=20x f=40,

J t u

and

- F - ,  -  1 5n=ft 'É='"Í:15.
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following expÍessions :The resultíng conclusion is

Bknc: L9, 59, 59, 74,

which is different from Bbr and is fully in accordance with
the Fundamental Equation.

Another example from (3) is the following:

Ai o, zo, 30, 40
Al- 70, 80, 90, L00
Bi  0,  30,35,  n
82: 80, 85, 95, 100

The observation is crisp:

A*: 45,  45,  65,  65,

The result of KH-interpolation is again non-convex:

Bhr: 5L, 53, 65, 60 ,

where the right side of the set has to be normalized as
65 > 60. The result by Gedeon and Kőczy3) i5

BLx: 50,  50,  65,65,

which is crisp such as observation.
The present method will give the following results:

c :,-d:í!^'I,!= 15 x * = ,, ,d,@rA) 5u

d,(8,3): d AtA)y+= 15 x i3: tr ,'d{A'Ar)

F. , ,  s
F r= f r= i : : 0 " _=0 ,

J t u

and

Í* nFu 5mL=r,Í" =0"fr-:0.

From this data, the conclusion will be

B.xnc: 50, 50, 65, 65 ,

which is identical in this case with the previous result, as
here both fuzziness values are 0.

4. Multi-dimensional Case

c= * ffia,{n,,n,)
+. . .

.rlzvltFz)

Wr(
+

r'.ll\r11/-L2)

W'l'
(e)+

Irl}|. b Zl

WÁ,

dr(BrBz)
(10)

In the previous section the basic method was discussed
and formulas calculated for a single input variable. Of
course, interpolation is really useful only.if the number of
dimensions is large, and the formula , = f brings in intrac-
tability.

There are various possibilities to extend rule interpolation
into multiple dimensions. The major concern is to keep the
computational complexity low, so to apply simple formulas
for calculating the resulting distance.

In (5, 6,7) the use of Euclidean metrics and the Pythago-
rean sum of the normalized component distances was pro-
posed, and in many experiments that proved to be a good
choice from the practical point of view (even though the use
of the Hausdorff-distance, e.g., might also have some ad-
vantages). So we propose for the summation of real metric
dissimilarities the same approach. As a result, we obtain the

and a similar expression for dy(B',82). (Here, /< is the number
of input dimensions.)

It is more interesting how the fuzziness of the conclusion
can be calculated as that value is based on the dissimilarity
of the relative fuzziness, certainly not a metric concept. To
find a reasonable solution first the semantic interpretation
of the use of the Euclidean distance must be discussed. In
the expressions where the resulting distances of pairs of
rules or even resulting core sizes are calculated, there are
always fwo expressions containing the same structure of
Pythagorean sum, one in the numerator and one in the de-
nominator of the fraction. In both cases, the number of ele-
ments added is identical, it is t, the number of inpu_t
dimensions. If the expressions are multiplied now by f lr2
= 1, and /c2 is brought under the square root, we find expres-

sions of the structure , which is the quadratic

mean of the members rni.
Similarly, if we apply the general Minkowski-distance

with exponent m instead of the Euclidean one (as pro-
posed'), the expressions can be interpreted as means of the
power z in both the numerator and the denominator. In the
case of dissimilarities of the relative fuzziness, we must
apply a corresponding type of mean, as the degree of dis-
similarity is calculated here by the ratio, i.e., a multiplicative
operation, it seems to be reasonable to apply a multiplicative
averaging operator, as the simplest possibility,the geometric
mean. Consequently the resulting degrees of fuzziness will
be calculated by

fr=W#.(11) '  
nfrr, , f ivr, ... , f iro

A similar formula is applicable for Fn*

5. General Shape Membership Functions

In the prevíous sections, the interpolation method based
on thc conservation of fuzziness and the Fundamental Equa-
tion of Fuzzy Rule Interpolation has been presented for
trapezoidal shape membership functions. Of course, these
include also the special cases of triangular, crisp, and crisp
singleton sets. In most real applications, the sets applied in
rules and observation belong to one of these classes. From

w-*-Tr-+...+-w
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the practical application point, these cases are important, as
more general membership function shapes are rarely if ever
applied in commercial or industrial fiuzy controllers and
expert systems. However, it is interesting to discuss how this
approach can be extended to general shape membership
functions. As a condition, we will assumet) that membership
functions are norÍnal and convex. (Even though interpola-
tion methods for arbitrqly shaped membership functions
have been proposed also'/.)

Obviously, (4), (5) and (6) do not depend on the shape
of the membership functíon (as long as it is convex and
normal, and consequently it has a connected core). The cru-
cial question is how (7) and (8), formulas defining support
points of ,B* and by these, defining the whole shape of the
conclusion fuzzy set, can be extended to other than trape-
zoidal cases.

It should be noticed that in the calculation of the ,'fuzzí-

ness" values, i.e., the widths of the non-crisp regions in each
dimension, the difference of the x; coordinate of the core
and support point is calculated. Consequently, for arbitrary
membership function shape, for any cr, the position of the
cr-cut point will determine the (local) value of "cr-fuzziness"
either in relation to the core, or in relation to the support.

The following formula will define the location of the
cr-cut point of .B* (upper or lower) in these two senses,
depending on the way of defining F and f:

Fuuo:fr,rffi Gz)

SO

F,p"(c)=Bip._BÍru,.,|

frp"(r)=Wi,p,-Aip,ol

F ruruo(c\ : W ruuo - B rruo-rl

Í,uu,(c) = Wru ruo _ A,,u^-,|

describe the core relative definitions of F and f. and

F,ru"b) =Wíp,_ B-u,,-o|

frp,(t) =Wip, - Aip,-ol

F ruuo(s) = W rruo - B ruu^^l

Í'uu,G) : b,,,,o_ A,,u^u|

are the definitions for the support relative case.
Figure 4 depicts a general case in X with denotations of

some definitions for I,
It is hard to decide whether cr=L or cr=0 is more suitable

in a general case, it should be decided depending on the
application context. It is also possible to take the average of
the two, by applying any mean, e.g., in the simplest case

n* /c + s\ Witu" _ BÍ'po:t| + |BÍ'ru" _ BÍ'po=o|
rUUc\ I ,/=2 z

and similarly f 
.Ll(Jo(T), et".

Finally, we mention 
-another 

possibility, if membership
functions are continuously differentiable, for each cr the de-

dB*@)
rivatives -i-,etc. can be determined and the fictive core

I o
(
I

t

I
(
i
n
t
S

c
a
n

flU(d/c) flU(d/s)

FÍg. 4. Various denotation of fuzziness values for general
shape membership functions.

be determined by substitutinr B*(J)=I or = 0, etc., and the
derivative-based core relative and support relative fuzziness

values FÍ'po(dls), fi1ug(dls) etc. can be calculated.
The extension of these formulas for the multi-dimen-

sional case is done in the same way as it is done for the
trapezoidal case.

6. Conclusions

In this paper we investigated the question whether inter-
polation of fuzzy rules can be done just by the information
available from the closer of the two flanks of rules flanking
the observation. The method we suggested was based on the
idea of conserving the relative fuzziness values, proposed in
a former paper. However, here the Fundamental Equation of
fuzzy rule interpolation was considered as the starting point,
and some different formulas were obtained. The one dimen-
sional case was extended to multiple input variables, by
using the Euclidean distance for calculating the core lengths
and core distances, and the geometric mean for the fuzziness
values. In the last section results valid for trapezoidal rules
were extended to general shape membership functions.

The advantage of this method in comparison with the
former introduced KH and related interpolations is that here
no information on the farther flanks of the neighboring rules
is necessary, moreover, those flanks do not influence the
shape of the conclusion. This latter being always immedi-
ately interpretable, obtaining abnormal shape or subnormal
membership functions is guaranteed. One of the possible
application fields of this method is the interpolation on the
meta levels of structured hierarchical rule bases where the
interpolated membership functions are elements of the
sparse fuzzy partition of a subspace of input space, and have
necessarily very different (larger) support etc. size than ob-
servations.
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